Co to jest promieniowanie ciała czarnego?

Falowa teoria światła, którą tak dobrze uchwyciły równania Maxwella, stała się dominującym światłem teoria z XIX wieku (przewyższająca teorię ciałek Newtona, która zawiodła w wielu przypadkach) sytuacje). Pierwszym poważnym wyzwaniem dla teorii było wyjaśnienie promieniowanie cieplne, który jest rodzajem promieniowanie elektromagnetyczne emitowane przez przedmioty ze względu na ich temperaturę.

Testowanie promieniowania cieplnego

Można ustawić aparat do wykrywania promieniowania z obiektu utrzymywanego w temperaturze T.1. (Ponieważ ciepłe ciało emituje promieniowanie we wszystkich kierunkach, konieczne jest zastosowanie pewnego rodzaju osłony, aby promieniowanie badany jest wąską wiązką.) Umieszczając ośrodek dyspersyjny (tj. pryzmat) między ciałem a detektorem, długości fal (λ) promieniowania rozprasza się pod kątem (θ). Detektor, ponieważ nie jest punktem geometrycznym, mierzy deltę zasięgutheta co odpowiada delcie zakresuλ, chociaż w idealnym ustawieniu ten zakres jest stosunkowo niewielki.

instagram viewer

Gdyby ja reprezentuje całkowitą intensywność fra na wszystkich długościach fal, a następnie tę intensywność w przedziale δλ (między granicami λ i δi Lamba;) jest:

δja = R(λ) δλ

R(λ) jest promienistość lub intensywność na jednostkę długości fali. W rachunek różniczkowy notacji, wartości δ zmniejszają się do granicy zera, a równanie staje się:

dI = R(λ)

Eksperyment opisany powyżej wykrywa dI, i dlatego R(λ) można określić dla dowolnej pożądanej długości fali.

Radiancy, temperatura i długość fali

Wykonując eksperyment dla szeregu różnych temperatur, uzyskujemy zakres radiancji w porównaniu do krzywe długości fali, które dają znaczące wyniki:

  • Całkowita intensywność wypromieniowana na wszystkich długościach fal (tj. Obszar pod R(λ) krzywa) rośnie wraz ze wzrostem temperatury.

Jest to z pewnością intuicyjne i w rzeczywistości stwierdzimy, że jeśli weźmiemy całkę powyższego równania natężenia, otrzymamy wartość, która jest proporcjonalna do czwartej potęgi temperatury. W szczególności proporcjonalność pochodzi Prawo Stefana i jest określony przez Stała Stefana-Boltzmanna (sigma) w formie:

ja = σ T4
  • Wartość długości fali λmax przy której promieniowanie osiąga maksimum maleje wraz ze wzrostem temperatury.

Eksperymenty pokazują, że maksymalna długość fali jest odwrotnie proporcjonalna do temperatury. W rzeczywistości stwierdziliśmy, że jeśli pomnożysz λmax i temperaturę, uzyskuje się stałą, w tak zwanym Prawo przesiedlenia Weina:λmax T. = 2,898 x 10-3 mK

Promieniowanie ciała czarnego

Powyższy opis wymagał trochę oszukiwania. Światło odbija się od obiektów, więc opisany eksperyment napotyka problem tego, co faktycznie jest testowane. Aby uprościć sytuację, naukowcy spojrzeli na: ciało czarne, czyli przedmiot, który nie odbija światła.

Rozważ metalowe pudełko z małą dziurką. Jeśli światło trafi w dziurę, wejdzie do pudełka i istnieje małe prawdopodobieństwo, że odskoczy z powrotem. Dlatego w tym przypadku dziura, a nie samo pudełko, jest ciałem czarnym. Promieniowanie wykryte na zewnątrz otworu będzie próbką promieniowania wewnątrz pudełka, więc wymagana jest pewna analiza, aby zrozumieć, co dzieje się wewnątrz pudełka.

Pudełko jest wypełnione elektromagnetyczny stojące fale. Jeśli ściany są metalowe, promieniowanie odbija się wewnątrz pudełka, a pole elektryczne zatrzymuje się na każdej ścianie, tworząc węzeł na każdej ścianie.

Liczba fal stojących o długości fali pomiędzy λ i jest

N (λ) dλ = (8π V / λ4) dλ

gdzie V. to objętość pudełka. Można to udowodnić poprzez regularną analizę fal stojących i rozszerzenie jej do trzech wymiarów.

Każda pojedyncza fala wnosi energię kT do promieniowania w pudełku. Z klasycznej termodynamiki wiemy, że promieniowanie w skrzynce jest w równowadze termicznej ze ścianami w temperaturze T.. Promieniowanie jest pochłaniane i szybko ponownie emitowane przez ściany, co powoduje oscylacje w częstotliwości promieniowanie. Średnia termiczna energia kinetyczna atomu oscylującego wynosi 0,5kT. Ponieważ są to proste oscylatory harmoniczne, średnia energia kinetyczna jest równa średniej energii potencjalnej, więc całkowita energia jest kT.

Promieniowanie jest powiązane z gęstością energii (energia na jednostkę objętości) u(λ) w związku

R(λ) = (do / 4) u(λ)

Uzyskuje się to poprzez określenie ilości promieniowania przechodzącego przez element pola powierzchni w komorze.

Niepowodzenie fizyki klasycznej

u(λ) = (8π / λ4) kT
R(λ) = (8π / λ4) kT (do / 4) (znany jako Formuła Rayleigh-Jeans)

Dane (pozostałe trzy krzywe na wykresie) faktycznie pokazują maksymalną radiancję, a poniżej lambdamax w tym momencie promieniowanie spada, zbliżając się do 0 jako lambda zbliża się do 0.

Ta awaria nosi nazwę katastrofa ultrafioletowai do 1900 r. stworzył poważne problemy dla fizyki klasycznej, ponieważ podważył podstawowe pojęcia termodynamika i elektromagnetyczne, które były zaangażowane w osiągnięcie tego równania. (Przy dłuższych falach formuła Rayleigha-Jeansa jest bliższa obserwowanym danym).

Teoria Plancka

Max Planck zasugerował, że atom może absorbować lub ponownie emitować energię tylko w dyskretnych wiązkach (kwanty). Jeśli energia tych kwantów jest proporcjonalna do częstotliwości promieniowania, wówczas przy dużych częstotliwościach energia podobnie stałaby się duża. Ponieważ żadna fala stojąca nie może mieć energii większej niż kT, to skutecznie ograniczało promieniowanie o wysokiej częstotliwości, rozwiązując w ten sposób katastrofę ultrafioletową.

Każdy oscylator może emitować lub pochłaniać energię tylko w ilościach, które są całkowitymi wielokrotnościami kwantów energii (epsilon):

mi = n ε, gdzie liczba kwantów, n = 1, 2, 3,.. .

ν

ε = h ν

h

(do / 4)(8π / λ4)((hc / λ)(1 / (ehc/λ kT – 1)))

Konsekwencje

Podczas gdy Planck wprowadził ideę kwantów do rozwiązania problemów w jednym konkretnym eksperymencie, Albert Einstein poszedł dalej, aby zdefiniować ją jako podstawową właściwość pola elektromagnetycznego. Planck i większość fizyków nie potrafili zaakceptować tej interpretacji, dopóki nie było przytłaczających dowodów na to.

instagram story viewer